Transformations of Functions~Effect on x-values

OBJECTIVE: Determine the effect of k on the original function $f(x)$ if it were replaced with either $f(k x)$ or $f(x+k)$ where k is a real number.

The effect of $f(k x)$

for $\mathrm{f}(\mathrm{x})$ play https://www.desmos.com/calculator/nqxx2mhknn and only focus on " k ". Change $\mathrm{f}(\mathrm{x})$ to $f(x)=x^{3}$. Then change $\mathrm{g}(\mathrm{x})$ to $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{kx})$ and watch the transformation. Have students begin to make hypothesis about the effect of the constant " k ". Then change the equation to $f(x)=x$ to verify their hypothesis. Have students then sketch the transformations of $p(x)$. The parent function always occurs when $\mathrm{k}=1$

Answer the following four questions for each column 1. What type of transformation occurred? Be specific. 2. How did this transformation affect the x-values? 3. How did this transformation affect the y-values? 4. Did it affect the domain or the range? Explain why.	1. There was a reflection over the y-axis because $\mathrm{k}<0$ and a horizontal compression by a factor of k units because $\|k\|>$ 1. 2. The x-values were compressed by a factor of k units 3. The y-values were not affected 4. The domain was affected because the x values were changed.	1. There is a horizontal compression by a factor of k units because $\|k\|>1$. 2. The x-values were compressed by a factor of k units 3. The y-values were not affected 4. The domain was affected because the x-values were changed.	1. There was a reflection over the y-axis because $\mathrm{k}<0$ and a horizontal stretch by a factor of k units because $0<\|k\|<$ 1. 2. The x-values were stretched by a factor of k units 3. The y-values were not affected 4. The domain was affected because the x values were changed.	1. There was a horizontal stretch by a factor of k units because $0<\|k\|<$ 1 2. The x-values were stretched by a factor of k units 3. The y-values were not affected 4. The domain was affected because the x values were changed.
The effect of $f(x+k)$				
for $\mathrm{f}(\mathrm{x})$ play https://www.desmos.com/calculator/nqxx2mhknn and only focus on " k ". Change $\mathrm{f}(\mathrm{x})$ to $f(x)=x^{2}$. Then change $\mathrm{g}(\mathrm{x})$ to $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{k})$ and watch the transformation. Have students begin to make hypothesis about the effect of the constant " k ". Then change the equation to $f(x)=x^{3}$ to verify their hypothesis. Have students then sketch the transformations of $\mathrm{p}(\mathrm{x})$. The parent function always occurs when $\mathrm{k}=1$				
$f(x)$	$f(x-2)$	f	$f(-x-2)$	$f(-x+2)$
$f(x)=x^{2}$	$f(a)=(a-2)^{2}$	$g(r)=(r+2)^{2}$	$k(s)=(-s-2)^{2}$	$g(x)=(-x+2)^{2}$
$h(x)$	$h(x-3)$	$h(x+4)$	$h(-x-4)$	$h(-x+4)$
$h(x)=\sqrt{x}$	$k(r)=\sqrt{r-3}$	$k(r)=\sqrt{r+4}$	$l(s)=\sqrt{-s-4}$	$k(r)=\sqrt{-r+4}$

$p(x)$ $\begin{gathered} p(x) \\ =\left\{\begin{array}{c} (x+3)^{2}-3, x \leq-2 \\ x,-2<x \leq 2 \\ -(x-3)^{2}+3, x>2 \end{array}\right. \end{gathered}$	$p(x-1)$ $k(x)=\left\{\begin{array}{c} (x+2)^{2}-3, x \leq-1 \\ x-1,-1<x \leq 3 \\ -(x-4)^{2}+3, x>3 \end{array}\right.$	$p(x+2)$ $\begin{gathered} g(x) \\ =\left\{\begin{array}{c} (x+5)^{2}-3, x \leq-4 \\ x+2,-4<x \leq 0 \\ -(x-1)^{2}+3, x>0 \end{array}\right. \end{gathered}$	$p(-x-1)$ $=\left\{\begin{array}{c} r(x) \\ (-x+2)^{2}-3, x \geq 1 \\ -x-1,1>x \geq-3 \\ -(-x-4)^{2}+3, x<-3 \end{array}\right.$	$p(-x+2)$ $\begin{gathered} k(x) \\ =\left\{\begin{array}{c} (-x+5)^{2}-3, x \geq 4 \\ -x+2,4>x \geq 0 \\ -(-x-1)^{2}+3, x<0 \end{array}\right. \end{gathered}$
Answer the following four questions for each column 1. What type of transformation occurred? Be specific. 2. How did this transformation affect the x-values? 3. How did this transformation affect the y-values? 4. Did it affect the domain or the range? Explain why. Emphasize the order of the horizontal reflection and horizontal shift	1. There was horizontal shift to the right k units because $\mathrm{k}<0$. 2. The x-values were shifted to the right by k units 3. The y-values were not affected 4. The domain was affected because the x-values were changed.	1. There was horizontal shift to the left k units because $\mathrm{k}>0$. 2. The x-values were shifted to the left by k units 3. The y-values were not affected 4. The domain was affected because the x values were changed.	1. There was horizontal shift to the right k units because $k<0$ followed by a reflection across the y-axis. 2. The x-values were shifted to the right by k units and then multiplied by -1 . 3. The y-values were not affected 4. The domain was affected because the x-values were changed.	1. There was horizontal shift to the left k units because $k>0$ followed by a reflection across the y-axis. 2. The x-values were shifted to the left by k units and then multiplied by -1 . 3. The y-values were not affected 4. The domain was affected because the x values were changed.

