Transformations of Functions~Effect on y-values

Secondary Math II Notes
OBIECTIVE: Determine the effect on the original function $f(x)$ if it were replaced with either $k f(x) \operatorname{or} f(x)+k$ where k is a real number.

The effect of $k f(x)$
for $\mathrm{f}(\mathrm{x})$ play https://www.desmos.com/calculator/nqxx2mhknn and only focus on " k ". Change $\mathrm{f}(\mathrm{x})$ to $f(x)=x^{2}$. Then change $\mathrm{g}(\mathrm{x})$ to $\mathrm{g}(\mathrm{x})=\mathrm{kf}(\mathrm{x})$ and watch the transformation. Have students begin to make hypothesis about the effect of the constant " k ". Then change the equation to $f(x)=x^{3}$ to verify their hypothesis. Have students then sketch the transformations of $\mathrm{p}(\mathrm{x})$. The parent function always occurs when $\mathrm{k}=1$

Answer the following four questions for each column 1. What type of transformation occurred. Be specific. 2. How did this transformation affect the x values? 3. How did this transformation affect the y values? 4. Did it affect the domain or the range? Explain why.	1.Reflection over the x axis because $\mathrm{k}<0$ and a vertical stretch because $\mathrm{k}>1$ 2. The x -values were not affected 3. The y-values were "stretched vertically" by a factor of k units. 4. This affects the range because the y-values were affected.	1.A vertical stretch because $\mathrm{k}>1$ 2. The x-values were not affected 3. The y-values were "stretched vertically" by a factor of k units. 4. This affects the range because the y-values were affected.	1. Reflection over the x axis because $\mathrm{k}<0$ and a vertical compression because $0<\mathrm{k}<1$. 2. The x -values were not affected 3. The y-values were "compressed vertically" by a factor of k units. 4. This affects the range because the y-values were affected.	1. A vertical compression because $0<\mathrm{k}<1$. 2. The x -values were not affected 3. The y-values were "compressed vertically" by a factor of k units. 4. This affects the range because the y-values were affected.
The effect of $f(x)+$				
for $\mathrm{f}(\mathrm{x})$ play https://www.desmos.com/calculator/nqxx2mhknn and only focus on " k ". Change $\mathrm{f}(\mathrm{x})$ to $f(x)=x^{2}$. Then change $\mathrm{g}(\mathrm{x})$ to $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{k}$ and watch the transformation. Have students begin to make hypothesis about the effect of the constant " k ". Then change the equation to $f(x)=x^{3}$ to verify their hypothesis. Have students then sketch the transformations of $\mathrm{p}(\mathrm{x})$. The parent function always occurs when $\mathrm{k}=1$				
$f(x)=x^{2}$	$f(x)=x^{2}-3$	$\begin{gathered} f(x)+3 \\ \vdots \cdot \\ \cdot \\ \vdots \end{gathered}$ $f(x)=x^{2}+3$	$f(x)=x^{2}-0.3$	$f(x)=x^{2}+0.3$
$g(x)=2^{x}$	$p(x)=2^{x}-1$	$p(a)=2^{a}+3$	$g(x)-0.5$ $p(a)=2^{a}-0.5$	$p(x)=2^{x}+0.5$

