Secondary Math II Notes
OBJECTIVE: Compose functions graphically and algebraically. Write composition of functions to model scenarios.
Composition of Functions: The composition of two functions is written as $\left(f^{\circ} g\right)(x)$. The function $\left(f^{\circ} g\right)(x)=f(g(x))$.

Composition of functions graphically

On a graphing calculator, graph
$f(x)=-x-1$ and $g(x)=2 x-3$.
Fill in the table below

X	$f(x)$	$g(x)$
-6	5	-9
-5	4	-8
-4	3	-7
-3	2	-6
-2	1	-5
-1	0	-4
0	-1	-3
1	-2	-2
2	-3	-1
3	-4	0
4	-5	1
5	-6	2
6	-7	3

On a graphing calculator, graph
$f(x)=x-2$ and $g(x)=-x+1$.
Fill in the table below

X	$f(x)$	$g(x)$
-6	-8	7
-5	-7	6
-4	-6	5
-3	-5	4
-2	-4	3
-1	-3	2
0	-2	1
1	-1	0
2	0	-1
3	1	-2
4	2	-3
5	3	-4
6	4	-5

Graph the function
$\left(f^{\circ} g\right)(x)$ using the functions to the

X	$\left(f^{\circ} g\right)(x)$
-3	5
-2	4
-1	3
0	2
1	1

right.
Graph the function
($g^{\circ} f$) (x) using the functions to the right.

X	$\left(g^{\circ} f\right)(x)$
-3	-1
-2	-2
-1	-3
0	-4
1	-5

Graph the function $g(g(x))$ using the functions to the

X	$g(g(x))$
-3	-3
-2	-2
-1	-1
0	0
1	1

right.
Graph the function
$f(f(x))$ using the functions to the right.

X	$f(f(x))$
-3	-7
-2	-6
-1	-5
0	-4
1	-3

Composition of functions algebraically						
Use the following functions for the problems below$f(x)=-5 x, \quad g(x)=2 x-1, \quad h(x)=-x^{2}-4 x-1, \quad k(x)=x^{2}-x$						
$\begin{aligned} &\left(f^{\circ}\right. \\ &\left(f^{\circ} g\right)(x) \\ &= f(2 x \\ &=-5(2 x \\ &=-10 x \end{aligned}$	$\begin{aligned} & g)(x) \\ & =f(g \\ & -1) \\ & -1) \\ & +5 \end{aligned}$		$\begin{aligned} & h(f(t) \\ & =-(\\ & -1 \\ & =-2 \end{aligned}$	$\begin{aligned} & h(f(t)) \\ &)=h(-5 t) \\ & -5 t)^{2}-4(-5 t) \\ & t^{2}+20 t-1 \end{aligned}$	$\begin{aligned} & g(f(3 r)) \\ & g(-5(3 r))= g(-15 r) \\ &=2(-15 r) \\ &-1 \\ &=-30 r-1 \end{aligned}$	$\begin{gathered} f(h(4)) \\ f\left(-(4)^{2}-4(4)-1\right) \\ =f(-33)=165 \end{gathered}$
$\begin{array}{r} \left(g^{\mathrm{o}}\right. \\ \left(g^{\circ} k\right)(x) \\ =g \\ =2\left(x^{2}\right. \\ =2 x^{2} \end{array}$	$\begin{aligned} & k)(x) \\ & =g(k \\ & \left.x^{2}-x\right) \\ & -x)- \\ & -2 x- \end{aligned}$		$\begin{gathered} g(g(a) \\ = \\ =4 a \end{gathered}$	$\begin{aligned} & g(g(a)) \\ &)=g(2 a-1) \\ & (2 a-1)-1 \\ & 3 \end{aligned}$	$\begin{gathered} \left(k^{\circ} f\right)(2 n) \\ \left(k^{\circ} f\right)(2 n)=k(f(2 n)) \\ =k(-10 n) \\ =(-10 n)^{2}-(-10 n) \\ =100 n^{2}+10 n \end{gathered}$	$\begin{aligned} & f(f(3)) \\ = & f(-5(3)) \\ = & f(-15) \\ = & -5(-15) \\ = & 75 \end{aligned}$
Application of Composition of functions						
You work forty hours a week at a furniture store. You receive a $\$ 220$ weekly salary, plus a 3\% commission on sales over $\$ 5000$. Assume that you sell enough this week to get the commission. a) Write the commission sales as a function of total sales. $S(x)=x-5000$ b) Write the commission as a function of the commission sales. $C(r)=0.03 r$ c) Write the commission as a function of the total sales. The commission is represented by $\left(c^{\circ} S\right)(x)=0.03(x-$ 5000) $=0.03 x-150$ The table is representing how the formula would work.					Maurice's is having an end of season clearance sale. In the mail you receive a coupon for $\$ 5$ off of a pair of jeans. When you arrive at the store, you find that all jeans are 25% off. a) Write the cost of the jeans as a function if you used the coupon. $f(x)=x-5$ b) Write the cost of the jeans as a function if you used the discount of $25 \% . g(x)=.75 x$ Option 1- you use the $\$ 5$ coupon first and then you use the 25% off on the remaining amount. Option 2- you use the 25% off first and then you use the $\$ 5$ off on the remaining amount. c) Write a function that would represent option 1 d) Write a function that would represent option 2 e) Which option saves you the most money? Option 1 would be $g(f(x))=.75(x-5)=.75 x-3.75$ Option 2 would be $f(g(x))=.75 x-5$ Since they both have the same coefficient for the x variable and option 2 subtracts 5 instead of 3.75 , option 2 will save you the most money.	

