Domain and Range in Context 5.3 Secondary Math II Notes 5.3

OBJECTIVE: Graph functions in algebraic form to help determine the domain and range. Determine an appropriate set of numbers for the domain and range of a function in a specific context.

Graphing to Determine Domain and Range

Graph each function on your calculator. Write the domain and range below in *interval notation*.

f(x) = 3x + 4	$f(x) = x^2$	$f(x) = 2^x$
Domain: $(-\infty,\infty)$ Range: $(-\infty,\infty)$	Domain: $(-\infty,\infty)$ Range: $[0,\infty)$	Domain: $(-\infty,\infty)$ Range: $(0,\infty)$
$f(x) = -2x^2 + 11$	$f(x) = x^2 - 9$	$f(x) = \frac{1}{x+3}$
Domain: $(-\infty,\infty)$ Range: $(-\infty,11]$	Domain: $(-\infty,\infty)$ Range: $[-9,\infty)$	Domain: $(-\infty, -3) \cup (-3, \infty)$ Range: $(-\infty, 0) \cup (0, \infty)$
Graph each function on your calculator. Write the domain and range below in set notation or interval notation.		
$f(x) = \frac{1}{3}x - 2$	$f(x) = 3^x + 2$	f(x) = 6
Domain: All Real Numbers	Domain: All Real Numbers	Domain: All Real Numbers
Range: $\{y \mid y \in \mathfrak{N}\}$	Range: $\{y y > 2\}$	Range: ^{{6} }
$f(x) = \sqrt{x-2}$	$f(x) = \frac{2x^2 - 17}{x^2 - 9}$	$f(x) = 4(x-5)^2 - 12$
Domain: $^{[2,\infty)}$ Range: $^{[0,\infty)}$	Domain: $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$ Range: $(-\infty, 2) \cup (2, \infty)$	Domain: $(-\infty,\infty)$ Range: $[-12,\infty)$

Domain and Range in Context		
The area of a square is given by A=s ² , where s represents the length of the side of the square and A represents the area. Your teacher asks you to create a square that has a side length of at least 3 inches.	The volume of a cube is given by V=s ³ , where s represents the length of the side of the square and V represents the volume. Your teacher asks you to create a cube that has a volume that is smaller than 8 cubic feet.	
Domain: The domain in this situation is $[3,\infty)$ because the input for the length of the side can be any number that is 3 inches or greater. Range: The range in this situation is $[9,\infty)$ because the smallest possible area is 9 square inches.	Domain: The domain in this situation is (0,2) because the input for the length of the side must be greater than 0 to be a cube and must be less than 2 to avoid getting a volume that is greater than 8. Range: The range in this situation is (0,8) because the volume must be less than 8 cubic feet.	
 Henry is inviting his friends over for a BBQ. Each hamburger costs 82 cents so if every guest gets one hamburger the total cost of the hamburgers for his BBQ is represented by C=0.82g where g is the number of guests and C is the total cost in dollars. Domain: The domain in this situation is the finite set {0,1,2,3,4} because the number of guests can only be represented by whole numbers. 	A group of drama students is planning a trip to see a popular play. They are taking a bus that will only carry 30 passengers. It will cost \$25 to park their bus at the theater and tickets to the play are \$15.00 per person. The situation is represented by C=15n+25, where n is the number of students and C is the total cost. Domain: The domain in this situation is the finite set {0,1,2,3,4} because the number of students can only be represented by whole numbers.	
Range: The range in this situation is also a finite set. {0, .82, 1.64, 2.46, 3, 28,}	Range: The range in this situation is also a finite set. {25, 40, 55, 70, 85,}	
There are 32 basketball teams competing in a tournament. After each round half of the remaining teams are eliminated. The situation is represented by E=32(1/2) ^r where r is the number of the round and E is the number of teams eliminated during that round.	Benny is building a ramp to meet wheelchair accessibility requirements. The ramp is 4 feet tall and for every 12 inches that the wheelchair moves forward, the wheelchair drops a total of 1 inch. This situation is represented by $H = -\frac{1}{2}f + 48$ where H is	
Domain: The domain in this situation is the finite set {1, 2, 3, 4, 5} because after five rounds all of the teams but one have been eliminated.	the height that the front of the wheelchair is off of the ground and f is the number of inches that the chair has been moved forward. Domain: The domain in this situation is $[0, 576]$	
Range: The range in this situation is also a finite set. {1, 2, 4, 8, 16} because these are the only number of teams that will ever be eliminated at any point during the tournament.	because at 576 the wheelchair touches the ground. Range: The range in this situation is [0,48] because the lowest possible height is 0 and the highest possible height is 48 inches.	
Jason has created a function that will tell him his share of the waiters' tips in a tip jar based on the total amount in the jar. Which of the following would be an appropriate domain for this function? a. all real numbers b. non-negative integers c. positive multiples of 0.01 d. non-negative multiples of 0.01 <i>non-negative multiples of 0.01</i>	 Choose all of the functions below for which the set of positive integers is an appropriate domain. a. A function that calculates the height of a ball at a specific time b. A function that converts degrees Fahrenheit to degrees Celsius c. A function calculates the cost of a field trip based on the number of students attending d. A function that takes a student's height in inches and returns the student's weight e. A function that calculates the revenue for a company based on the number of sales of a particular item only letters c and e 	