Pythagorean Theorem {9.1}

OBJECTIVE: Prove the Pythagorean Theorem and use it to find side lengths of triangles.		
Type of Proofs:		
Two Column	Algebraic	Proofs without words
Statement Reason	Using numbers and equality statements (i.e. solving an equation)	Píctures or díagrams that help the reader see why a partícular mathematical statement may be true
Pythagorean Theorem: In a right triangle, one leg squared plus the other leg squared equals the		
hypotenuse squared, $a^2 + b^2 = c^2$.		
President Garfield's Proof:	Statements	Reason
	$A = \frac{b_1 + b_2}{2} \cdot h$	Area of a trapezoid
b	$h = a + b, \ b_1 = a, \ b_2 =$	<i>b</i> Based on the diagram to the right.
e	$A = \frac{a+b}{2} \cdot (a+b)$	Substituting Values
a b	$A = \frac{a^2 + 2ab + b^2}{2} = \frac{1}{2} \left(a^2 + 2ab + b^2 \right)$	b^2) Distribution and simplifying
	$A_1 = \frac{1}{2} \cdot ba, \ A_2 = \frac{1}{2} \cdot c^2, \ A_3 = \frac{1}{2} \cdot c^2$	ab Areas of triangles in diagram
	$A = \frac{1}{2} \cdot ba + \frac{1}{2} \cdot c^{2} + \frac{1}{2} \cdot ab$	Sum of triangle areas
	$A = \frac{1}{2} \left(ba + c^2 + ab \right)$	Factor out 1/2
	$A = \frac{1}{2} \left(2ab + c^2 \right)$	Combine like terms
	$\frac{1}{2}(a^2 + 2ab + b^2) = \frac{1}{2}(2ab + c)$	²) Since the areas are equivalent
	$a^2 + b^2 = c^2$	Multiply by 2 and subtract 2ab from both sides

