

OBJECTIVE: Prove the Pythagorean Theorem and use it to find side lengths of triangles.
Type of Proofs:

Two Column		Algebraic	Proofs without words		
Statement	Reason		using numbers and equality statements (i.e. solving an equation)		Pictures or diagrams that help
:---					
theader see why a particular					
mathematical statement may					
be true					

Pythagorean Theorem: In a right triangle, one leg squared plus the other leg squared equals the hypotenuse squared, $a^{2}+b^{2}=c^{2}$.

Using the Pythagorean Theorem		
$\begin{aligned} & x^{2}+15^{2}=21^{2} \\ & 21^{2}-15^{2}=x^{2} \\ & 216=x^{2} \\ & 6 \sqrt{6}=x \end{aligned}$	$\begin{aligned} & 7.5^{2}+18^{2}=x^{2} \\ & 380.25=x^{2} \\ & 19.5=x \end{aligned}$	
A right triangle has side lengths a, b, and c, where c is the hypotenuse. Solve for the missing side. $\begin{array}{ll} a=\sqrt{3} & \\ b=7 & (\sqrt{3})^{2}+7^{2}=c^{2} \\ c= & 52=c^{2} \\ & 2 \sqrt{13}=c \end{array}$	A right triangle has side lengths a, b, and c, where c is the hypotenuse. Solve for the missing side. $\begin{array}{ll} a=\sqrt{5} & \\ b= \\ c=\sqrt{21} & (\sqrt{21})^{2}-(\sqrt{5})^{2}=b^{2} \\ & 21-5=b^{2} \\ & 16=b^{2} \\ & 4=b \end{array}$	A right triangle has side lengths a, b, and c, where c is the hypotenuse. Solve for the missing side. $\begin{aligned} & a= \\ & b=16 \\ & \\ & c=20 \\ & \\ & \\ & \\ & \\ & 144=a^{2} \\ & 12=a \end{aligned}$
Classifying Triangles		
If $a^{2}+b^{2}>c^{2}$, then the triangle is \qquad Acute \qquad If $a^{2}+b^{2}<c^{2}$, then the triangle is \qquad Obtuse \qquad If $a^{2}+b^{2}=c^{2}$, then the triangle is \qquad Right . \qquad		
Determine whether the given side lengths would be create an acute, obtuse, or right triangle		
Side Lengths: $12,15,9$ $\begin{aligned} & 9^{2}+12^{2}-15^{2} \\ & 81+144 _225 \\ & 225=225 \end{aligned}$ Right	Side Lengths: 5, 7, 11 $\begin{aligned} & 5^{2}+7^{2}-11^{2} \\ & 25+49 _121 \\ & 74<121 \end{aligned}$ Obtuse	Side Lengths: $\sqrt{5}, 5, \sqrt{21}$ $\begin{aligned} & (\sqrt{5})^{2}+(\sqrt{21})^{2}-5^{2} \\ & 5+21 _25 \\ & 26>25 \end{aligned}$ Acute

