

OBJECTIVE: Prove the Pythagorean Theorem and use it to find side lengths of triangles.
Pythagorean Theorem: In a right triangle, one leg squared plus the other leg squared equals the hypotenuse squared, $a^{2}+b^{2}=c^{2}$.

| |
| :--- | :--- |

Find the length of the diagonal of a rectangle with a length of 10 cm and a width of 7 cm .

10

7

$$
10^{2}+7^{2}=c^{2}
$$

$$
100+49=c^{2}
$$

$$
\sqrt{149}=c
$$

How long must a guywire be to run from the top of a 20 ft pole to a point on the ground 8 ft from the base of the pole?

$$
\begin{aligned}
& 20^{2}+8^{2}=c^{2} \\
& 400+64=c^{2} \\
& 4 \sqrt{29}=c
\end{aligned}
$$

Challenge: A tent is supported by a guy rope tied to a stake, as shown in the diagram. What is the length of the rope?

$$
\begin{aligned}
& 8^{2}+6^{2}=c^{2} \\
& 64+36=c^{2} \\
& 100=c^{2} \\
& 10=c
\end{aligned}
$$

Classifying Triangles

If $a^{2}+b^{2}>c^{2}$, then the triangle is \qquad Acute \qquad .

If $a^{2}+b^{2}<c^{2}$, then the triangle is \qquad Obtuse \qquad .

If $a^{2}+b^{2}=c^{2}$, then the triangle is \qquad Right \qquad .

Determine whether the given side lengths would be create an acute, obtuse, or right triangle

Side Lengths: 12, 15, 9

$$
9^{2}+12^{2} _15^{2}
$$

$81+144$ __ 225
$225=225$
Right

Side Lengths: 5, 7, 11

$$
5^{2}+7^{2}-11^{2}
$$

$$
25+49 _121
$$

$$
74<121
$$

Obtuse

Side Lengths: $\sqrt{5}, 5, \sqrt{21}$

$$
(\sqrt{5})^{2}+(\sqrt{21})^{2}-5^{2}
$$

$$
5+21 _25
$$

$$
26>25
$$

Acute

