Solving using Similiar Triangles $\{8.4\}$

OBJECTIVE: use similar triangle theorems to solve a variety of triangle values

Review

Angle Relationships: complementary \& supplementary angles vertical Angles, corresponding Angles, Alt. interior angles, Alt. Exterior angles

Triangle Similarity: corresponding sides are proportional and angles are congruent
Theorem 1: A line parallel to one side of a triangle divides the other two proportionally.
Theorem 2: The altitude to the hypotenuse of a right triangle forms two triangles that are similar to each other and to the original triangle.

Find the missing angle measures

$\alpha=65 \text { by }$ iorresponding angles $\beta=80$ by alt. interior angles $\lambda=35 \text { by }$ supplementary angles	$\begin{gathered} a=60, b=100, \\ c=60, d=20, \\ e=80, l=100, \\ j=80, i=100, \\ h=120, g=60, \\ k=120, x=60 \end{gathered}$		
$a=57$ by alternate interior angles, $d=59$ by supplementary angles, $c=116$ by alternate interior, $b=64$ by alt. interior	Assume $\overline{Q R} \\| \overline{S T}$ $x=50$ from supplementary angles, $y=50$ from corresponding angles, $z=40$ from corresponding angles		
Solve for the value of x. Assume $\overline{P Q} \\| \overline{S T}$. $\begin{aligned} & x+50+x=180 \\ & 2 x+50=180 \\ & 2 x=130 \\ & x=65 \end{aligned}$ By supplement angles	Assume $\mathrm{k} \\| l$		

Find all missing angles, then identify any similar triangles using AA similarity theorem.

